Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants
نویسندگان
چکیده
Motivated by the Hankel determinant evaluation of moment sequences, we study a kind of Pfaffian analogue evaluation. We prove an LU -decomposition analogue for skew-symmetric matrices, called Pfaffian decomposition. We then apply this formula to evaluate Pfaffians related to some moment sequences of classical orthogonal polynomials. In particular we obtain a product formula for a kind of q-Catalan Pfaffians. We also establish a connection between our Pfaffian formulas and certain weighted enumeration of shifted reverse plane partitions.
منابع مشابه
Selberg integrals and Catalan-Pfaffian Hankel determinants
In our previous works “Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants” (by M.Ishikawa, H. Tagawa and J. Zeng, J. Combin. Theory Ser. A, 120, 2013, 1263–1284) we have proposed several ways to evaluate certain Catalan-Hankel Pffafians and also formulated several conjectures. In this work we propose a new approach to compute these Catalan-Hankel Pffafians using Sel...
متن کاملMotzkin Number Pfaffian (theorem 2)
Evaluate the Pfaffian Pfa i, j 1i, j2 n where ai, j j i Mi j 3 with Mn denoting the Motzkin numbers: Mn k0 n 1 k1 n 2 k 2 k k. The evaluation of this Pfaffian was conjectured in the paper "Pfaffian decomposition and a Pfaffian analogue of q-Catalan Hankel determinants'' Now we guess an implicit description (linear recurrences) for the auxiliary function c 2 n,i. We set the option AdditionalEqua...
متن کاملHankel Pfaffians, Discriminants and Kazhdan-Lusztig bases
We use Kazhdan-Lusztig bases of representations of the symmetric group to express Pfaffians with entries (ai−aj)hi+j . In the case where the parameters ai are specialized to successive powers of q, and the hi are complete functions, we obtain the q-discriminant. 1 ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ’ ooo oo o ...
متن کاملELLIPTIC INTEGRABLE SYSTEMS Generalizations of Cauchy’s Determinant Identity and Schur’s Pfaffian Identity
Abstract We review several determinant and Pfaffian identities, which generalize the evaluation formulae of Cauchy’s determinant det (1/(xi + yj)) and Schur’s Pfaffian Pf ((xj − xi)/(xj + xi)). As a multi-variable generalization, we consider Cauchytype determinants and Schur-type Pfaffians of matrices with entries involving some generalized Vandermonde determinants. Also we give an elliptic gen...
متن کاملα-Pfaffian, pfaffian point process and shifted Schur measure
For any complex number α and any even-size skew-symmetric matrix B, we define a generalization pf α (B) of the pfaffian pf(B) which we call the α-pfaffian. The α-pfaffian is a pfaffian analogue of the α-determinant studied in [ST] and [V]. It gives the pfaffian at α = −1. We give some formulas for α-pfaffians and study the positivity. Further we define point processes determined by the α-pfaffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 120 شماره
صفحات -
تاریخ انتشار 2013